Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics Clin Appl ; 8(5-6): 382-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24470335

RESUMO

The protease web is a synonym for highly regulated molecular networks comprising enzymes, substrates, inhibitors, and other regulatory proteins. Latest high-throughput methods provided huge data sets, revealing an amazing complexity of proteolytic systems important for health and disease. Based on our previous studies, we discuss major problems and questions that have to be solved to gain precise insight into the regulation of the protease web and its impact on pathophysiological conditions. The goal is a combination of different proteomic approaches that help to investigate specific protease function at a glance. Exemplarily, the characterization of the metalloproteases meprin α and meprin ß by proteomic identification of cleavage sites and terminal amine isotopic labeling of substrates demonstrates the power of MS-based techniques. Meprins are rather orphan proteases and could not be assigned to precise biological functions until recently. Proteomics helped to identify meprin α and meprin ß being important for collagen assembly and deposition in skin, which makes them potential therapeutic targets in fibrotic conditions. Additionally, identification of the cleavage site specificity provides the basis for the development of activity-based probes and small compound inhibitors, important for the regulation of meprin activity and subsequent treatment of associated diseases.


Assuntos
Metaloproteases/metabolismo , Terapia de Alvo Molecular/métodos , Proteômica/métodos , Tiopronina/metabolismo , Animais , Humanos , Processamento de Proteína Pós-Traducional , Proteólise
2.
Biochim Biophys Acta ; 1833(12): 3355-3367, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24135057

RESUMO

Proteolysis of transmembrane molecules is an irreversible post-translational modification enabling autocrine, paracrine and endocrine signaling of many cytokines. The pro-inflammatory activities of membrane bound TNFα (pro-TNFα) strongly depend on ectodomain shedding mediated by the A Disintegrin And Metalloprotease family member ADAM17. Despite the well-documented role of ADAM17 in pro-TNFα cleavage during inflammation, little is known about its regulation. Mitogen-activated protein kinase-induced phosphorylation of the ADAM17 cytoplasmic tail has been described to be required for proper activation. To address, if pro-TNFα shedding depends on cytosolic phosphorylation we analyzed ADAM17 mutants lacking the cytoplasmic domain. ADAM17 mediated shedding of pro-TNFα was induced by PMA, Anisomycin and the phosphatase inhibitors Cantharidin and Calyculin A. Deletion of the entire cytoplasmic portion of ADAM17 abolished furin-dependent proteolytic maturation and pro-TNFα cleavage. Interestingly, we could exclude that resistance to proconvertase processing is the reason for the enzymatic inactivity of ADAM17 lacking the cytoplasmic portion as furin-resistant ADAM17 mutants rescued genetic ADAM17 deficiency after mitogen-activated protein kinase activation. Adding only 6 cytoplasmic amino acids completely restored ADAM17 maturation and shedding of pro-TNFα as well as of both TNF-receptors Finally, we showed that a pro-TNFα mutant lacking the cytoplasmic portion was also shed from the cell surface. We conclude that pro-TNFα cleavage by its major sheddase ADAM17 does not depend on cytosolic phosphorylation and/or interaction. These results have general implications on understanding the activation mechanism controlling the activity of ADAM17.


Assuntos
Proteínas ADAM/metabolismo , Citoplasma/metabolismo , Furina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas ADAM/química , Proteína ADAM17 , Animais , Linhagem Celular , Humanos , Camundongos , Proteínas Mutantes/metabolismo , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Proteólise
3.
Proc Natl Acad Sci U S A ; 110(35): 14219-24, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940311

RESUMO

Type I fibrillar collagen is the most abundant protein in the human body, crucial for the formation and strength of bones, skin, and tendon. Proteolytic enzymes are essential for initiation of the assembly of collagen fibrils by cleaving off the propeptides. We report that Mep1a(-/-) and Mep1b(-/-) mice revealed lower amounts of mature collagen I compared with WT mice and exhibited significantly reduced collagen deposition in skin, along with markedly decreased tissue tensile strength. While exploring the mechanism of this phenotype, we found that cleavage of full-length human procollagen I heterotrimers by either meprin α or meprin ß led to the generation of mature collagen molecules that spontaneously assembled into collagen fibrils. Thus, meprin α and meprin ß are unique in their ability to process and release both C- and N-propeptides from type I procollagen in vitro and in vivo and contribute to the integrity of connective tissue in skin, with consequent implications for inherited connective tissue disorders.


Assuntos
Colágeno Tipo I/metabolismo , Metaloendopeptidases/metabolismo , Pró-Colágeno N-Endopeptidase/metabolismo , Resistência à Tração , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Metaloendopeptidases/genética , Camundongos , Camundongos Knockout , Proteólise , Pele/metabolismo
4.
Biochem J ; 450(2): 253-64, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23410038

RESUMO

The metalloproteases meprin α and meprin ß exhibit structural and functional features that are unique among all extracellular proteases. Although meprins were discovered more than 30 years ago, their precise substrates and physiological roles have been elusive. Both enzymes were originally found to be highly expressed in kidney and intestine, which focused research on these particular tissues and associated pathologies. Only recently it has become evident that meprins exhibit a much broader expression pattern, implicating functions in angiogenesis, cancer, inflammation, fibrosis and neurodegenerative diseases. Different animal models, as well as proteomics approaches for the identification of protease substrates, have helped to reveal more precise molecular signalling events mediated by meprin activity, such as activation and release of pro-inflammatory cytokines. APP (amyloid precursor protein) is cleaved by meprin ß in vivo, reminiscent of the ß-secretase BACE1 (ß-site APP-cleaving enzyme 1). The subsequent release of Aß (amyloid ß) peptides is thought to be the major cause of the neurodegenerative Alzheimer's disease. On the other hand, ADAM10 (a disintegrin and metalloprotease domain 10), which is the constitutive α-secretase, was shown to be activated by meprin ß, which is itself shed from the cell surface by ADAM10. In skin, both meprins are overexpressed in fibrotic tumours, characterized by massive accumulation of fibrillar collagens. Indeed, procollagen III is processed to its mature form by meprin α and meprin ß, an essential step in collagen fibril assembly. The recently solved crystal structure of meprin ß and the unique cleavage specificity of these proteases identified by proteomics will help to generate specific inhibitors that could be used as therapeutics to target meprins under certain pathological conditions.


Assuntos
Fibrose/metabolismo , Inflamação/metabolismo , Metaloendopeptidases/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Metaloendopeptidases/química , Proteômica
5.
Cell Mol Life Sci ; 70(2): 309-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22940918

RESUMO

The in vivo roles of meprin metalloproteases in pathophysiological conditions remain elusive. Substrates define protease roles. Therefore, to identify natural substrates for human meprin α and ß we employed TAILS (terminal amine isotopic labeling of substrates), a proteomics approach that enriches for N-terminal peptides of proteins and cleavage fragments. Of the 151 new extracellular substrates we identified, it was notable that ADAM10 (a disintegrin and metalloprotease domain-containing protein 10)-the constitutive α-secretase-is activated by meprin ß through cleavage of the propeptide. To validate this cleavage event, we expressed recombinant proADAM10 and after preincubation with meprin ß, this resulted in significantly elevated ADAM10 activity. Cellular expression in murine primary fibroblasts confirmed activation. Other novel substrates including extracellular matrix proteins, growth factors and inhibitors were validated by western analyses and enzyme activity assays with Edman sequencing confirming the exact cleavage sites identified by TAILS. Cleavages in vivo were confirmed by comparing wild-type and meprin(-/-) mice. Our finding of cystatin C, elafin and fetuin-A as substrates and natural inhibitors for meprins reveal new mechanisms in the regulation of protease activity important for understanding pathophysiological processes.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Proteína ADAM10 , Sequência de Aminoácidos , Animais , Células CACO-2 , Linhagem Celular , Cistatina C/metabolismo , Citocinas/metabolismo , Elafina/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , alfa-2-Glicoproteína-HS/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(40): 16131-6, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988105

RESUMO

Ectodomain shedding at the cell surface is a major mechanism to regulate the extracellular and circulatory concentration or the activities of signaling proteins at the plasma membrane. Human meprin ß is a 145-kDa disulfide-linked homodimeric multidomain type-I membrane metallopeptidase that sheds membrane-bound cytokines and growth factors, thereby contributing to inflammatory diseases, angiogenesis, and tumor progression. In addition, it cleaves amyloid precursor protein (APP) at the ß-secretase site, giving rise to amyloidogenic peptides. We have solved the X-ray crystal structure of a major fragment of the meprin ß ectoprotein, the first of a multidomain oligomeric transmembrane sheddase, and of its zymogen. The meprin ß dimer displays a compact shape, whose catalytic domain undergoes major rearrangement upon activation, and reveals an exosite and a sugar-rich channel, both of which possibly engage in substrate binding. A plausible structure-derived working mechanism suggests that substrates such as APP are shed close to the plasma membrane surface following an "N-like" chain trace.


Assuntos
Membrana Celular/metabolismo , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Modelos Moleculares , Conformação Proteica , Cristalografia , Dimerização , Humanos , Ligação Proteica , Estrutura Terciária de Proteína
7.
Mol Cell Proteomics ; 10(9): M111.009233, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21693781

RESUMO

Astacins are secreted and membrane-bound metalloproteases with clear associations to many important pathological and physiological processes. Yet with only a few substrates described their biological roles are enigmatic. Moreover, the lack of knowledge of astacin cleavage site specificities hampers assay and drug development. Using PICS (proteomic identification of protease cleavage site specificity) and TAILS (terminal amine isotopic labeling of substrates) degradomics approaches >3000 cleavage sites were proteomically identified for five different astacins. Such broad coverage enables family-wide determination of specificities N- and C-terminal to the scissile peptide bond. Remarkably, meprin α, meprin ß, and LAST_MAM proteases exhibit a strong preference for aspartate in the peptide (P)1' position because of a conserved positively charged residue in the active cleft subsite (S)1'. This unparalleled specificity has not been found for other families of extracellular proteases. Interestingly, cleavage specificity is also strongly influenced by proline in P2' or P3' leading to a rare example of subsite cooperativity. This specificity characterizes the astacins as unique contributors to extracellular proteolysis that is corroborated by known cleavage sites in procollagen I+III, VEGF (vascular endothelial growth factor)-A, IL (interleukin)-1ß, and pro-kallikrein 7. Indeed, cleavage sites in VEGF-A and pro-kallikrein 7 identified by terminal amine isotopic labeling of substrates matched those reported by Edman degradation. Moreover, the novel substrate FGF-19 was validated biochemically and shown to exhibit altered biological activity after meprin processing.


Assuntos
Precursores Enzimáticos/metabolismo , Calicreínas/metabolismo , Metaloendopeptidases/metabolismo , Peptídeos/análise , Proteômica/métodos , Proteínas Recombinantes/metabolismo , Coloração e Rotulagem/métodos , Tiopronina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Cromatografia Líquida , Precursores Enzimáticos/química , Humanos , Calicreínas/química , Queratinócitos/citologia , Queratinócitos/metabolismo , Cinética , Metaloendopeptidases/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Filogenia , Proteólise , Proteínas Recombinantes/química , Alinhamento de Sequência , Especificidade por Substrato , Espectrometria de Massas em Tandem , Tiopronina/química , Fator A de Crescimento do Endotélio Vascular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...